277 research outputs found

    Public sector reforms, privatisation and regimes of control in a Chinese enterprise

    Get PDF
    The Chinese economic reform has recently become a major focus of attention around the world. The underlying rationale for the Chinese government's privatisation and public sector reforms is the view that reformed state enterprises and privately managed firms will demonstrate superior management control and better performance, and hence encourage economic growth and employment. There are very few intensive case studies published in English journals studying whether firms privatised in China have reversed previous losses and introduced better management controls, leading to increased investment, productivity, and overall organizational effectiveness and efficiency. The researchers do not seek to deny the control problems of Chinese SOEs, but question the consequences of the new controls installed during the post-privatisation period. The paper also reveals a declining tendency in employment; altered distributions of wealth ? especially to the state ? and labour, and a lack of improvements in the accountability of privatised companies. Overall, the paper argues, the aims of reform policies in China, including better control, increased profitability and an improved working life for Chinese people, have not materialized. The paper calls for more research on the above issues in the Chinese context

    Nucleon-nucleon momentum correlation function for light nuclei

    Get PDF
    Nucleon-nucleon momentum correlation function have been presented for nuclear reactions with neutron-rich or proton-rich projectiles using a nuclear transport theory, namely Isospin-Dependent Quantum Molecular Dynamics model. The relationship between the binding energy of projectiles and the strength of proton-neutron correlation function at small relative momentum has been explored, while proton-proton correlation function shows its sensitivity to the proton density distribution. Those results show that nucleon-nucleon correlation function is useful to reflect some features of the neutron- or proton-halo nuclei and therefore provide a potential tool for the studies of radioactive beam physics.Comment: Talk given at the 18th International IUPAP Conference on Few-Body Problems in Physics (FB18), Santos, Brasil, August 21-26, 2006. To appear in Nucl. Phys.

    Neutron/proton ratio of nucleon emissions as a probe of neutron skin

    Full text link
    The dependence between neutron-to-proton yield ratio (RnpR_{np}) and neutron skin thickness (δnp\delta_{np}) in neutron-rich projectile induced reactions is investigated within the framework of the Isospin-Dependent Quantum Molecular Dynamics (IQMD) model. The density distribution of the Droplet model is embedded in the initialization of the neutron and proton densities in the present IQMD model. By adjusting the diffuseness parameter of neutron density in the Droplet model for the projectile, the relationship between the neutron skin thickness and the corresponding RnpR_{np} in the collisions is obtained. The results show strong linear correlation between RnpR_{np} and δnp\delta_{np} for neutron-rich Ca and Ni isotopes. It is suggested that RnpR_{np} may be used as an experimental observable to extract δnp\delta_{np} for neutron-rich nuclei, which is very significant to the study of the nuclear structure of exotic nuclei and the equation of state (EOS) of asymmetric nuclear matter.Comment: 7 pages, 5 figures; accepted by Phys. Lett.

    Population Monte Carlo algorithms

    Full text link
    We give a cross-disciplinary survey on ``population'' Monte Carlo algorithms. In these algorithms, a set of ``walkers'' or ``particles'' is used as a representation of a high-dimensional vector. The computation is carried out by a random walk and split/deletion of these objects. The algorithms are developed in various fields in physics and statistical sciences and called by lots of different terms -- ``quantum Monte Carlo'', ``transfer-matrix Monte Carlo'', ``Monte Carlo filter (particle filter)'',``sequential Monte Carlo'' and ``PERM'' etc. Here we discuss them in a coherent framework. We also touch on related algorithms -- genetic algorithms and annealed importance sampling.Comment: Title is changed (Population-based Monte Carlo -> Population Monte Carlo). A number of small but important corrections and additions. References are also added. Original Version is read at 2000 Workshop on Information-Based Induction Sciences (July 17-18, 2000, Syuzenji, Shizuoka, Japan). No figure

    Scaling of anisotropy flows in intermediate energy heavy ion collisions

    Get PDF
    Anisotropic flows (v1v_1, v2v_2 and v4v_4) of light nuclear clusters are studied by a nucleonic transport model in intermediate energy heavy ion collisions. The number-of-nucleon scalings of the directed flow (v1v_1) and elliptic flow (v2v_2) are demonstrated for light nuclear clusters. Moreover, the ratios of v4/v22v_4/v_2^2 of nuclear clusters show a constant value of 1/2 regardless of the transverse momentum. The above phenomena can be understood by the coalescence mechanism in nucleonic level and are worthy to be explored in experiments.Comment: Invited talk at "IX International Conference on Nucleus-Nucleus Collisions", Rio de Janeiro, Aug 28- Sept 1, 2006; to appear on the proceeding issue in Nuclear Physics

    Glueball spectrum based on a rigorous three-dimensional relativistic equation for two-gluon bound states I: Derivation of the relativistic equation

    Full text link
    A rigorous three-dimensional relativistic equation satisfied by two-gluon bound states is derived from the QCD with massive gluons. With the gluon fields and the quark fields being expanded in terms of the gluon multipole fields and the spherical Dirac spinors respectively, the equation is well established in the angular momentum representation and hence is much convenient for solving the problem of two-gluon glueball spectra. In particular, the interaction kernel in the equation is exactly derived and given a closed expression which includes all the interactions taking place in the two-gluon glueballs. The kernel contains only a few types of Green's functions and commutators. Therefore, it is not only easily calculated by the perturbation method, but also provides a suitable basis for nonperturbative investigations

    Glueball spectrum based on a rigorous three-dimensional relativistic equation for two-gluon bound states II: calculation of the glueball spectrum

    Full text link
    In the preceding paper, a rigorous three-dimensional relativistic equation for two-gluon bound states was derived from the QCD with massive gluons and represented in the angular momentum representation. In order to apply this equation to calculate the glueball spectrum, in this paper, the equation is recast in an equivalent three-dimensional relativistic equation satisfied by the two-gluon positive energy state amplitude. The interaction Hamiltonian in the equation is exactly derived and expressed as a perturbative series. The first term in the series describes the one-gluon exchange interaction which includes fully the retardation effect in it. This term plus the linear confining potential are chosen to be the interaction Hamiltonian and employed in the practical calculation. With the integrals containing three and four spherical Bessel functions in the QCD vertices being analytically calculated, the interaction Hamiltonian is given an explicit expression in the angular momentum representation. Numerically solving the relativistic equation with taking the contributions arising from the retardation effect and the longitudinal mode of gluon fields into account, a set of masses for the 0++,0+,1++,1+,2++0^{++},0^{-+},1^{++},1^{-+},2^{++} and 2+2^{-+\text{}} glueball states are obtained and are in fairly good agreement with the predictions given by the lattice simulatio

    Scaling of Anisotropic Flow and Momentum-Space Densities for Light Particles in Intermediate Energy Heavy Ion Collisions

    Get PDF
    Anisotropic flows (v2v_2 and v4v_4) of light nuclear clusters are studied by Isospin-Dependent Quantum Molecular Dynamics model for the system of 86^{86}Kr + 124^{124}Sn at intermediate energy and large impact parameters. Number-of-nucleon scaling of the elliptic flow (v2v_2) are demonstrated for the light fragments up to AA = 4, and the ratio of v4/v22v_4/v_2^2 shows a constant value of 1/2. In addition, the momentum-space densities of different clusters are also surveyed as functions of transverse momentum, in-plane transverse momentum and azimuth angle relative to the reaction plane. The results can be essentially described by momentum-space power law. All the above phenomena indicate that there exists a number-of-nucleon scaling for both anisotropic flow and momentum-space densities for light clusters, which can be understood by the coalescence mechanism in nucleonic degree of freedom for the cluster formation.Comment: 8 pages, 3 figures; to be published in Physics Letters

    Two refreshing views of Fluctuation Theorems through Kinematics Elements and Exponential Martingale

    Get PDF
    In the context of Markov evolution, we present two original approaches to obtain Generalized Fluctuation-Dissipation Theorems (GFDT), by using the language of stochastic derivatives and by using a family of exponential martingales functionals. We show that GFDT are perturbative versions of relations verified by these exponential martingales. Along the way, we prove GFDT and Fluctuation Relations (FR) for general Markov processes, beyond the usual proof for diffusion and pure jump processes. Finally, we relate the FR to a family of backward and forward exponential martingales.Comment: 41 pages, 7 figures; version2: 45 pages, 7 figures, minor revisions, new results in Section

    Azimuthal asymmetry of direct photons in intermediate energy heavy-ion collisions

    Get PDF
    Hard photon emitted from energetic heavy ion collisions is of very interesting since it does not experience the late-stage nuclear interaction, therefore it is useful to explore the early-stage information of matter phase. In this work, we have presented a first calculation of azimuthal asymmetry, characterized by directed transverse flow parameter FF and elliptic asymmetry coefficient v2v_2, for proton-neutron bremsstrahlung hard photons in intermediate energy heavy-ion collisions. The positive FF and negative v2v_2 of direct photons are illustrated and they seem to be anti-correlated to the corresponding free proton's flow.Comment: 7 pages, 4 figures; accepted by Physics Letters
    corecore